Copied to
clipboard

G = C23.D14order 224 = 25·7

3rd non-split extension by C23 of D14 acting via D14/C7=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C23.3D14, C4⋊Dic73C2, Dic7⋊C48C2, (C2×C4).27D14, C22⋊C4.2D7, C72(C422C2), (C4×Dic7)⋊10C2, C2.9(C4○D28), C14.7(C4○D4), (C2×C28).2C22, C23.D7.3C2, C2.7(D42D7), (C2×C14).20C23, (C22×C14).9C22, C22.40(C22×D7), (C2×Dic7).26C22, (C7×C22⋊C4).2C2, SmallGroup(224,74)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C23.D14
C1C7C14C2×C14C2×Dic7C4×Dic7 — C23.D14
C7C2×C14 — C23.D14
C1C22C22⋊C4

Generators and relations for C23.D14
 G = < a,b,c,d,e | a2=b2=c2=1, d14=b, e2=cb=bc, eae-1=ab=ba, dad-1=ac=ca, bd=db, be=eb, cd=dc, ce=ec, ede-1=d13 >

Subgroups: 198 in 60 conjugacy classes, 29 normal (all characteristic)
C1, C2, C2, C4, C22, C22, C7, C2×C4, C2×C4, C23, C14, C14, C42, C22⋊C4, C22⋊C4, C4⋊C4, Dic7, C28, C2×C14, C2×C14, C422C2, C2×Dic7, C2×C28, C22×C14, C4×Dic7, Dic7⋊C4, C4⋊Dic7, C23.D7, C7×C22⋊C4, C23.D14
Quotients: C1, C2, C22, C23, D7, C4○D4, D14, C422C2, C22×D7, C4○D28, D42D7, C23.D14

Smallest permutation representation of C23.D14
On 112 points
Generators in S112
(2 64)(4 66)(6 68)(8 70)(10 72)(12 74)(14 76)(16 78)(18 80)(20 82)(22 84)(24 58)(26 60)(28 62)(29 100)(30 44)(31 102)(32 46)(33 104)(34 48)(35 106)(36 50)(37 108)(38 52)(39 110)(40 54)(41 112)(42 56)(43 86)(45 88)(47 90)(49 92)(51 94)(53 96)(55 98)(85 99)(87 101)(89 103)(91 105)(93 107)(95 109)(97 111)
(1 15)(2 16)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 23)(10 24)(11 25)(12 26)(13 27)(14 28)(29 43)(30 44)(31 45)(32 46)(33 47)(34 48)(35 49)(36 50)(37 51)(38 52)(39 53)(40 54)(41 55)(42 56)(57 71)(58 72)(59 73)(60 74)(61 75)(62 76)(63 77)(64 78)(65 79)(66 80)(67 81)(68 82)(69 83)(70 84)(85 99)(86 100)(87 101)(88 102)(89 103)(90 104)(91 105)(92 106)(93 107)(94 108)(95 109)(96 110)(97 111)(98 112)
(1 63)(2 64)(3 65)(4 66)(5 67)(6 68)(7 69)(8 70)(9 71)(10 72)(11 73)(12 74)(13 75)(14 76)(15 77)(16 78)(17 79)(18 80)(19 81)(20 82)(21 83)(22 84)(23 57)(24 58)(25 59)(26 60)(27 61)(28 62)(29 86)(30 87)(31 88)(32 89)(33 90)(34 91)(35 92)(36 93)(37 94)(38 95)(39 96)(40 97)(41 98)(42 99)(43 100)(44 101)(45 102)(46 103)(47 104)(48 105)(49 106)(50 107)(51 108)(52 109)(53 110)(54 111)(55 112)(56 85)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 109 77 38)(2 94 78 51)(3 107 79 36)(4 92 80 49)(5 105 81 34)(6 90 82 47)(7 103 83 32)(8 88 84 45)(9 101 57 30)(10 86 58 43)(11 99 59 56)(12 112 60 41)(13 97 61 54)(14 110 62 39)(15 95 63 52)(16 108 64 37)(17 93 65 50)(18 106 66 35)(19 91 67 48)(20 104 68 33)(21 89 69 46)(22 102 70 31)(23 87 71 44)(24 100 72 29)(25 85 73 42)(26 98 74 55)(27 111 75 40)(28 96 76 53)

G:=sub<Sym(112)| (2,64)(4,66)(6,68)(8,70)(10,72)(12,74)(14,76)(16,78)(18,80)(20,82)(22,84)(24,58)(26,60)(28,62)(29,100)(30,44)(31,102)(32,46)(33,104)(34,48)(35,106)(36,50)(37,108)(38,52)(39,110)(40,54)(41,112)(42,56)(43,86)(45,88)(47,90)(49,92)(51,94)(53,96)(55,98)(85,99)(87,101)(89,103)(91,105)(93,107)(95,109)(97,111), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84)(85,99)(86,100)(87,101)(88,102)(89,103)(90,104)(91,105)(92,106)(93,107)(94,108)(95,109)(96,110)(97,111)(98,112), (1,63)(2,64)(3,65)(4,66)(5,67)(6,68)(7,69)(8,70)(9,71)(10,72)(11,73)(12,74)(13,75)(14,76)(15,77)(16,78)(17,79)(18,80)(19,81)(20,82)(21,83)(22,84)(23,57)(24,58)(25,59)(26,60)(27,61)(28,62)(29,86)(30,87)(31,88)(32,89)(33,90)(34,91)(35,92)(36,93)(37,94)(38,95)(39,96)(40,97)(41,98)(42,99)(43,100)(44,101)(45,102)(46,103)(47,104)(48,105)(49,106)(50,107)(51,108)(52,109)(53,110)(54,111)(55,112)(56,85), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,109,77,38)(2,94,78,51)(3,107,79,36)(4,92,80,49)(5,105,81,34)(6,90,82,47)(7,103,83,32)(8,88,84,45)(9,101,57,30)(10,86,58,43)(11,99,59,56)(12,112,60,41)(13,97,61,54)(14,110,62,39)(15,95,63,52)(16,108,64,37)(17,93,65,50)(18,106,66,35)(19,91,67,48)(20,104,68,33)(21,89,69,46)(22,102,70,31)(23,87,71,44)(24,100,72,29)(25,85,73,42)(26,98,74,55)(27,111,75,40)(28,96,76,53)>;

G:=Group( (2,64)(4,66)(6,68)(8,70)(10,72)(12,74)(14,76)(16,78)(18,80)(20,82)(22,84)(24,58)(26,60)(28,62)(29,100)(30,44)(31,102)(32,46)(33,104)(34,48)(35,106)(36,50)(37,108)(38,52)(39,110)(40,54)(41,112)(42,56)(43,86)(45,88)(47,90)(49,92)(51,94)(53,96)(55,98)(85,99)(87,101)(89,103)(91,105)(93,107)(95,109)(97,111), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84)(85,99)(86,100)(87,101)(88,102)(89,103)(90,104)(91,105)(92,106)(93,107)(94,108)(95,109)(96,110)(97,111)(98,112), (1,63)(2,64)(3,65)(4,66)(5,67)(6,68)(7,69)(8,70)(9,71)(10,72)(11,73)(12,74)(13,75)(14,76)(15,77)(16,78)(17,79)(18,80)(19,81)(20,82)(21,83)(22,84)(23,57)(24,58)(25,59)(26,60)(27,61)(28,62)(29,86)(30,87)(31,88)(32,89)(33,90)(34,91)(35,92)(36,93)(37,94)(38,95)(39,96)(40,97)(41,98)(42,99)(43,100)(44,101)(45,102)(46,103)(47,104)(48,105)(49,106)(50,107)(51,108)(52,109)(53,110)(54,111)(55,112)(56,85), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,109,77,38)(2,94,78,51)(3,107,79,36)(4,92,80,49)(5,105,81,34)(6,90,82,47)(7,103,83,32)(8,88,84,45)(9,101,57,30)(10,86,58,43)(11,99,59,56)(12,112,60,41)(13,97,61,54)(14,110,62,39)(15,95,63,52)(16,108,64,37)(17,93,65,50)(18,106,66,35)(19,91,67,48)(20,104,68,33)(21,89,69,46)(22,102,70,31)(23,87,71,44)(24,100,72,29)(25,85,73,42)(26,98,74,55)(27,111,75,40)(28,96,76,53) );

G=PermutationGroup([[(2,64),(4,66),(6,68),(8,70),(10,72),(12,74),(14,76),(16,78),(18,80),(20,82),(22,84),(24,58),(26,60),(28,62),(29,100),(30,44),(31,102),(32,46),(33,104),(34,48),(35,106),(36,50),(37,108),(38,52),(39,110),(40,54),(41,112),(42,56),(43,86),(45,88),(47,90),(49,92),(51,94),(53,96),(55,98),(85,99),(87,101),(89,103),(91,105),(93,107),(95,109),(97,111)], [(1,15),(2,16),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,23),(10,24),(11,25),(12,26),(13,27),(14,28),(29,43),(30,44),(31,45),(32,46),(33,47),(34,48),(35,49),(36,50),(37,51),(38,52),(39,53),(40,54),(41,55),(42,56),(57,71),(58,72),(59,73),(60,74),(61,75),(62,76),(63,77),(64,78),(65,79),(66,80),(67,81),(68,82),(69,83),(70,84),(85,99),(86,100),(87,101),(88,102),(89,103),(90,104),(91,105),(92,106),(93,107),(94,108),(95,109),(96,110),(97,111),(98,112)], [(1,63),(2,64),(3,65),(4,66),(5,67),(6,68),(7,69),(8,70),(9,71),(10,72),(11,73),(12,74),(13,75),(14,76),(15,77),(16,78),(17,79),(18,80),(19,81),(20,82),(21,83),(22,84),(23,57),(24,58),(25,59),(26,60),(27,61),(28,62),(29,86),(30,87),(31,88),(32,89),(33,90),(34,91),(35,92),(36,93),(37,94),(38,95),(39,96),(40,97),(41,98),(42,99),(43,100),(44,101),(45,102),(46,103),(47,104),(48,105),(49,106),(50,107),(51,108),(52,109),(53,110),(54,111),(55,112),(56,85)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,109,77,38),(2,94,78,51),(3,107,79,36),(4,92,80,49),(5,105,81,34),(6,90,82,47),(7,103,83,32),(8,88,84,45),(9,101,57,30),(10,86,58,43),(11,99,59,56),(12,112,60,41),(13,97,61,54),(14,110,62,39),(15,95,63,52),(16,108,64,37),(17,93,65,50),(18,106,66,35),(19,91,67,48),(20,104,68,33),(21,89,69,46),(22,102,70,31),(23,87,71,44),(24,100,72,29),(25,85,73,42),(26,98,74,55),(27,111,75,40),(28,96,76,53)]])

C23.D14 is a maximal subgroup of
C24.30D14  C24.31D14  C42.89D14  C42.93D14  C42.94D14  C42.98D14  C42.102D14  C42.104D14  C42.105D14  C42.106D14  C42.229D14  C42.113D14  C42.115D14  C42.118D14  C24.32D14  C24.35D14  C24.36D14  C4⋊C4.178D14  C14.342+ 1+4  C14.352+ 1+4  C14.712- 1+4  C14.422+ 1+4  C14.432+ 1+4  C14.1152+ 1+4  C14.482+ 1+4  C14.152- 1+4  C14.202- 1+4  C14.212- 1+4  C14.222- 1+4  C14.232- 1+4  C14.582+ 1+4  C4⋊C4.197D14  C14.802- 1+4  C14.602+ 1+4  C14.612+ 1+4  C14.622+ 1+4  C14.832- 1+4  C14.642+ 1+4  C14.842- 1+4  C14.852- 1+4  C42.137D14  C42.139D14  C42.140D14  C4220D14  C4221D14  C42.234D14  C42.144D14  C42.159D14  C42.160D14  D7×C422C2  C4224D14  C42.162D14  C42.165D14
C23.D14 is a maximal quotient of
C7⋊(C425C4)  Dic7⋊C4⋊C4  C4⋊Dic77C4  C14.(C4×D4)  (C2×Dic7).Q8  (C2×C28).28D4  (C2×C4).Dic14  (C22×C4).D14  C24.3D14  C24.4D14  C24.6D14  C24.8D14  C24.9D14  C24.10D14

44 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E4F4G4H4I7A7B7C14A···14I14J···14O28A···28L
order1222244444444477714···1414···1428···28
size111142241414141428282222···24···44···4

44 irreducible representations

dim111111222224
type+++++++++-
imageC1C2C2C2C2C2D7C4○D4D14D14C4○D28D42D7
kernelC23.D14C4×Dic7Dic7⋊C4C4⋊Dic7C23.D7C7×C22⋊C4C22⋊C4C14C2×C4C23C2C2
# reps1121213663126

Matrix representation of C23.D14 in GL4(𝔽29) generated by

1000
02800
0010
00928
,
1000
0100
00280
00028
,
28000
02800
0010
0001
,
0100
1000
00190
00143
,
17000
01700
002311
00236
G:=sub<GL(4,GF(29))| [1,0,0,0,0,28,0,0,0,0,1,9,0,0,0,28],[1,0,0,0,0,1,0,0,0,0,28,0,0,0,0,28],[28,0,0,0,0,28,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,19,14,0,0,0,3],[17,0,0,0,0,17,0,0,0,0,23,23,0,0,11,6] >;

C23.D14 in GAP, Magma, Sage, TeX

C_2^3.D_{14}
% in TeX

G:=Group("C2^3.D14");
// GroupNames label

G:=SmallGroup(224,74);
// by ID

G=gap.SmallGroup(224,74);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,96,55,506,188,6917]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^14=b,e^2=c*b=b*c,e*a*e^-1=a*b=b*a,d*a*d^-1=a*c=c*a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^13>;
// generators/relations

׿
×
𝔽